Intro to LaTeX using WordPress

John Vandivier
This article demonstrates one way to write complex equations using LaTeX on your WordPress blog. Why blog with LaTeX? At least two reasons:
  1. WordPress and other text editors don't support complex mathematical notation out-of-the-box.
  2. Writing in LaTeX is a standard skill in research. So you can blog and be pro at the same time.
The instructions here allow the use of a subset of LaTeX. Specifically, everything gets dumped into a LaTeX \\math environment. Basically, this approach will suit your needs for writing equations, but not for creating whole papers or documents. Steps:
  • Install the Jetpack plugin for WordPress.
  • Activate the Beautiful Math with LaTeX module in Jetpack.
  • Review the documentation, linked above, and start writing your equations in LaTeX!
    • You may also want to play around some with an online LaTeX editor. Like this one.
    • You can click here to download a text document containing an example of how to use Beautiful Math. The example contains the same text used to render the text below this bulleted list.
    • That text is also the solution to a question found on the Advanced Macro I – Ramirez Final Edition exam!
    • Thanks to Brian, Ennio, and Josh for showing me how to solve the related problem.
Given: $latex Y = C(Y-T) + I(i-\\pi^e, Y_{-1}) + \\bar{G} + X(\ ho, Y, Y*) \\\\\\\\ \\frac{M}{P} = L(i, Y-T) \\\\\\\\ BOP = X(\ ho, Y, Y*) + \\sigma(i - i*) + K $ We must write the total derivative in matrix form. The result will have a column of endogenous variables $latex dY, di,$ and $latex d\ ho$. Solving for $latex dY$: $latex Y = C(Y-T) + I(i-\\pi^e, Y_{-1}) + \\bar{G} + X(\ ho, Y, Y*) \\\\\\\\ dY = \\frac{dC}{dY}(dY - dT) + \\frac{dI}{dr}(di - d\\pi^e) + \\frac{dI}{dY}dY_{-1} + d\\bar{G} + \\frac{dX}{d\ ho}d\ ho + \\frac{dX}{dY}dY + \\frac{dX}{dY^*}dY^* \\\\\\\\ dY - dY\\frac{dC}{dY} - dY\\frac{dX}{dY} - di\\frac{dI}{dr} - d\ ho\\frac{dX}{d\ ho} = -\\frac{dC}{dY}dT - \\frac{dI}{dr}d\\pi^e + \\frac{dI}{dY}dY + d\\bar{G} + \\frac{dX}{dY*}dY* \\\\\\\\ dY(1 - \\frac{dC}{dY} - \\frac{dX}{dY}) - di\\frac{dI}{dr} - d\ ho\\frac{dX}{d\ ho} = -\\frac{dC}{dY}dT - \\frac{dI}{dr}d\\pi^e + \\frac{dI}{dY}dY + d\\bar{G} + \\frac{dX}{dY*}dY* \\\\\\\\ $ Solving for $latex dL$: $latex \\frac{M}{P} = L(i, Y-T) \\\\\\\\ d\\frac{M}{P} = \\frac{dL}{di}di + \\frac{dL}{dY}(dY - dT) \\\\\\\\ d\\frac{M}{P} = \\frac{dL}{di}di + \\frac{dL}{dY}dY - \\frac{dL}{dY}dT \\\\\\\\ \\frac{dL}{dY}dY + \\frac{dL}{di}di = d\\frac{M}{P} - \\frac{dL}{dY}dT \\\\\\\\ $ Solving for $latex d\ ho$ from the BOP function: $latex BOP = 0 = X(\ ho, Y, Y*) + \\sigma(i - i*) + K \\\\\\\\ 0 = \\frac{dX}{d\ ho}d\ ho + \\frac{dX}{dY}dY + \\frac{dX}{dY^*}dY^* + \\frac{d\\sigma}{dr}i - \\frac{d\\sigma}{dr}i^* + dK \\\\\\\\ \\frac{dX}{dY}dY + \\frac{d\\sigma}{dr}i + \\frac{dX}{d\ ho}d\ ho = \\frac{d\\sigma}{dr}i^* + \\frac{dX}{dY^*}dY^* + dK \\\\\\\\ $ Expressing the system of equations for $latex dY, di,$ and $latex d\ ho$ in matrix form: $latex dY(1 - \\frac{dC}{dY} - \\frac{dX}{dY}) - di\\frac{dI}{dr} - d\ ho\\frac{dX}{d\ ho} = -\\frac{dC}{dY}dT - \\frac{dI}{dr}d\\pi^e + \\frac{dI}{dY}dY + d\\bar{G} + \\frac{dX}{dY*}dY* \\\\\\\\ \\frac{dL}{dY}dY + \\frac{dL}{di}di = d\\frac{M}{P} - \\frac{dL}{dY}dT \\\\\\\\ \\frac{dX}{dY}dY + \\frac{d\\sigma}{dr}i + \\frac{dX}{d\ ho}d\ ho = \\frac{d\\sigma}{dr}i^* + \\frac{dX}{dY^*}dY^* + dK \\\\\\\\ \\\\\\\\ \\implies \\begin{bmatrix} F_1 & \\frac{dI}{dr} & -X_\ ho\\\\ L_Y & \\frac{dX}{d\ ho} & 0\\\\ X_Y & \\sigma_r & X_\ ho \\end{bmatrix} \\begin{bmatrix} dY\\\\ di\\\\ d\ ho \\end{bmatrix} = \\begin{bmatrix} F_2\\\\ d\\frac{M}{P} - \\frac{dL}{dY}dT\\\\ F_3 \\end{bmatrix} \\\\\\\\ \\\\\\\\ F_1 = 1 - \\frac{dC}{dY} - \\frac{dX}{dY} \\\\\\\\ F_2 = -\\frac{dC}{dY}dT - \\frac{dI}{dr}d\\pi^e + \\frac{dI}{dY}dY + d\\bar{G} + \\frac{dX}{dY*}dY* \\\\\\\\ F_3 = \\frac{d\\sigma}{dr}i^* + \\frac{dX}{dY^*}dY^* + dK $